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 INTERNATIONAL ECONOMIC REVIEW
 Vol. 20, No. 3, October, 1979

 ON THE VALUE MAXIMIZING PROPERTY OF

 INFINITE HORIZON EFFICIENT PROGRAMS*

 13Y TAPAN MITRA'

 1. INTRODUCTION

 An interesting problem in the theory of efficient allocation of resources over

 time, in an infinite horizon model, is to examine whether, in some appropriate

 sense, an efficient program maximizes the present-value of its consumption

 sequence.

 A natural approach to determine the present-value of an efficient program is to

 evaluate the consumption sequence at the competitive (intertemporal profit

 maximizing) prices associated with it. But, here, we encounter a basic difficulty,

 since there might be technologies which generate efficient programs, whose

 associated competitive prices do not define a finite present value of consumption.

 (A technology which admits a "golden-rule" program is the best-known example.)

 This brings us to the purpose of this note. It would be interesting to separate

 the technologies for which this difficulty must arise (for some efficient program

 generated by it) from those for which the difficulty cannot arise (for any efficient

 program generated by it). It is shown that every efficient program generated by

 the technology will have finite present value of consumption, at its competitive

 prices, iff the gross-output function, f, has one of the following characteristics:
 (i) f is strongly productive; (ii) f is strongly unproductive; (iii) f is a pure storage

 function at low input levels (Theorem 1).

 It might be useful to interpret this result in terms of the usual neoclassical

 model of economic growth, where current output is given by a constant returns

 to scale production function, defined on capital and labor inputs, capital de-

 preciates at a constant rate, and labor grows at a constant rate. In that

 framework, condition (i) [condition (ii)] means that the marginal product of

 capital is uniformly larger [smaller] than the sum of the depreciation rate and the

 labor growth rate. Condition (iii) means that for capital-labor ratios close to

 zero, the marginal product of capital is exactly equal to the depreciation rate plus
 the labor growth rate.

 Using this result, it is shown that if the gross-output function, f, satisfies one of
 the above stated conditions, then efficiency of a feasible program is equivalent

 to the statement that it maximizes the present value of its consumption sequence,

 at its competitive prices, among all feasible programs (Theorem 2).

 635
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 636 TAPAN MITRA

 2. THE MODEL

 Consider an aggregative model, with a technology given by a gross-output

 function, J from R,+ to itself. The technological possibilities are specified by
 inputs, x, and outputs y=f(x), for x?0.

 The following assumptions on f are maintained throughout:

 (A.I) f(0)=0;
 (A.2) f is strictly increasing for x?0;

 (A.3) f is concave for x ? 0;
 (A.4) f is differentiable for x>0.

 A feasible production program from x>0, is a sequence <x, y> = <x,, Yt+I >
 satisfying

 (1) xo = x, 0 ? xt ? yt for t > 1, f(xt) = Yt+I for t > 0.

 The consumption program <ch> = ct> generated by <x, y> is given by

 (2) ct yt -Xt (> 0) for t 2 1.

 The sequence <x, y, c> is called a feasible program from x, it being understood

 that <x, y> is a production program, and <c> is the corresponding consump-
 tion program.

 A feasible program <x', y', c'> from x, dominates a feasible program <x, y,

 C> from X, if c' > c for all t>1, and c > ct for some t. A feasible program
 <x, y, c> from x is inefficient if there is a feasible program <x', y', c'> from

 x which dominates it. A feasible program is called efficient if it is not inefficient.
 The competitive price sequence <p> = <Pt> associated with a feasible

 program < x, y, c > is given by

 (3) LPo 1 Pt+I = Pt/f(xt) for t?0
 These are the prices which yield maximum intertemporal profits:

 (4) wt = Pt+1f(xt) - ptXt ? p+ If(x) - ptx, for x 2 0 t 2 0.

 The input value sequence <v> = <Vt> associated with a feasible program

 < x, y, c > is given by Vt = Ptxt for t ? 0. A feasible program < x, y, c > from
 x is said to have bounded input value if supt>0vt< co. Otherwise, it is said to
 have unbounded input value. It is said to have bounded consumption value if
 the sequence <ptct> is summable; otherwise, it is said to have unbounded con-

 sumption value. A feasible program <x, Y, c> from x, is called the pure
 accumulation program from x, if it satisfies t+1 =f (5) for t?0.

 The gross-output function,], is said to be productive if f'(x)> I. for x>0; it is

 strongly productive if infx?0f'(x)> 1. Similarly, f is unproductive if f'(x)< 1
 for x>O; it is strongly unprodtuctive if supx?cf'(x)< I. Finally,f is a pure storage
 function iff'(x)=I for x>0; it is a pure storage function at low input levels,
 if there is x* > 0. such that f '(x) = 1 for 0 < x ! x*.
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 EFFICIENCY AND VALUE MAXIMIZATION 637

 3. A SUFFICIENT CONDITION FOR BOUNDED CONSUMPTION VALUE

 It is well-known, in the literature, that there are technologies which can generate

 efficient programs which do not have bounded consumption value (for example,

 technologies which allow for the existence of a "golden-rule" program). It is

 equally well-known that there are special technologies which can only generate

 efficient programs with bounded consumption value (see, for example, McFadden

 [1967] and Benveniste [1976] for discussions of such technologies). However,

 there does not exist any simple characterization of technologies which distinguishes

 the above two types. This section, and the next, are devoted to obtaining such a

 characterization. To this end, consider the following condition on the gross-

 output function, f:

 CONDITION B. J satisfies one of the following three properties: (i) f is strongly
 productive; (ii) f is strongly unproductive; (iii) f is a pure storage function at

 low input levels.

 In this section, we will establish that Condition B is sufficient to guarantee that

 every efficient program has bounded consumption value.

 We start by noting, without proofs, some well-known properties of concave
 functions, which will often be used later.

 LEMMA 1. Under (A. 1)-(A.4), f satisfies the following properties:

 (5) If x > x' > 0, then f'(x) < f'(x').

 (6) If x > x' > 0, then [f(x)/x] < [f(x')/x'].

 (7) For x > 0, [f'(x)x/f(x)] < 1.

 (8) If supf'(x) < 1, then sup [f(x)/x] < 1.
 x20 x>0

 (9) If inff'(x) < 1, then inf [f(x)/x] < 1.
 x20 x20

 (10) If supf'(x) < co, then lim [f'(x)x/f(x)] = 1.
 x20 x-0

 (11) If inff'(x) > 0, then lim [f'(x)x/f(x)] = 1.
 x20 XOo

 We turn now to the main result of this section, which is given by

 LEMMA 2. Under (A.1)-(A.4), every efficient program <x, y, c> from

 x>0 has bounded consumption value if Condition B is satisfied.

 PROOF. If Condition B (i) or (ii) is satisfied, it can be shown that the pure

 accumulation program from x has bounded input value. This, in turn, implies

 that every efficient program has bounded consumption value.

 If Condition B (i) is satisfied, then the pure accumulation program <x, Y, c5>
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 638 TAPAN MITRA

 from x has bounded input value, by Corollary 1, p. 341, of Benveniste [1976].

 If Condition B (ii) is satisfied, then since sup.?of'(x)=e< 1, so by (10), supx.0.
 [f(x)/x]=e. If <x, y, C5> is the pure accumulation program from x, then
 xt+1 =f)'(5)< e, and so O->0 as t-> om. Next, note that Vt ? =[f(t)ljYtf (5t)]
 so that by (7), Pt is monotonically non-decreasing.

 Suppose, now, that <x, y, C> does not have bounded input value. Then,
 th-oo, as t->oo. For t>0, we have (
 ( -)5 Iterating on this relation, (xt+2- l) ? [H_1f'(.s)] (xl-iv), SO
 that we get 5t+2 > 4t+ 1- [1t[+ 1f'(5s)] (x~ -a). Multiplying through by pt+2,
 we have t+22pt+2?+t+1- [(5 O- 1)/f'(xo)]. Dividing through by vt +j and
 simplifying, we get [f(5t+ 1)/t+ 1 f'(t+ 1)] 2 [l/f'(5t+ 1)]-[(5xO- 1)lf'(5Xo)5t+ ].
 Taking limits on both sides, we have 1 > [1/f'(0)], which means f'(0) 2 1, a con-
 tradiction.

 Now, when Condition B (i) or (ii) is satisfied, it can be shown that every efficient
 program has bounded consumption value. Consider an efficient program <x,

 y, c> from x >0. Then, since Pt < t, so ptCt < ptCt = Pt(ct - 5t). Hence, for
 T > 1, we have, by using (4),

 T T

 (12) E PtCt < E Pt(Ct - Ct) < PT(XT - XT) < PTXT.
 t=l t=l

 Since we have shown that PTXT is bounded above, so <x, y, c> has bounded
 consumption value.

 When, Condition B (iii) is satisfied, we must adopt a different proof. We
 will show, first, that for an efficient program <x, y, c>, xt must converge to
 zero. Using this fact, we will then show that <x, y, c> has bounded con-

 sumption value. We start with the first step. If xt =0, for some finite t, then we
 are done. If not, then xt>O for t>O. Then, ct+4=f(xt)-xt+1=[f(xt)/xt]xt
 -xt+ . Since under Condition B (iii), supx?0f'(x)=1, so supx>0 [f(x)/x]=1,
 by (5), (6) and (10). Hence, ct+ 1 < Xt-xt+ 1, and so for T > 0, we have ET OCt+ 1
 <?XO-XT+ 1?< XO. Thus, < c > is summable, and E t=Oct+ 1 < xO.

 Now, suppose xt does not converge to zero. Then, since xt+41xt for t>0,
 so there is b > 0, such that x, > b for t > 0, and hence yt ? b for t > 1. This implies
 that the sequence <ct/yt> is summable, so that by Lemma 2 in Mitra [1978],
 <x, y, c> is inefficient, a contradiction. Hence, xt must converge to zero, as
 t-+oo.

 By Condition B (iii), there is x* > 0, such that f'(x) = 1 for 0 < x < xt. Since

 xt converges to zero, there is - < oo, such that xt<x* for t > -c. By (7) and (10),
 f(x) = x for 0 < x < x*, so that f(xt) = xt for t >2r. Hence, for T > I, we have the
 following: t= =+ _ PtCt= T +1[ptf(Xt1 ptXtD ] = +1[pt - PtXt] < Prxr X
 Hence, ZT-1PtCt- Z=iPtCt+ E T1+ PCt? < E= PtCt+PrX-r< ??O.
 This proves that < x, y, c > has bounded consumption value.

 REMARK. McFadden [1967] has shown that if f(x) = dx, where d >0, then
 every efficient program generated by this function has bounded consumption
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 EFFICIENCY AND VALUE MAXIMIZATION 639

 value. This can be seen to be a special case of Lemma 2 for if f(x) = dx, then f

 must satisfy Condition B (i) or (ii) or (iii), depending on whether d> 1, or d <1,

 or d=1.

 4. A NECESSARY CONDITION FOR BOUNDED CONSUMPTION VALUE

 In this section, we will show that if Condition B is not satisfied then there is an

 efficient program which has unbounded consumption value. This means that

 Condition B is a necessary condition for every efficient program to have bounded

 value. The result will be obtained in two steps. First, it will be shown that if

 Condition B is violated, then the pure accumulation program from every positive

 initial input level has unbounded input value. Using this fact, we will then

 construct an efficient program with unbounded consumption value.

 LEMMA 3. Under (A.1)-(A.4), if Condition B is violated, then the pure ac-
 cumulation program from every x>O, has unbounded input value.

 PROOF. If Condition B is violated, then f must satisfy one of the following

 three conditions: (a) supx:of'(x)> 1 and infx20f'(x)< 1; (b) supx?0f'(x)> 1 and
 infx>_Of'(x) =1; (c) supx>of '(x) = 1 and f'(x) < 1 for all x > 0. We shall consider
 each of these cases in turn.

 In case (a), by (7), supx20 [f(x)/x] > 1, and by (8), infx?0 [f(x)/x] < 1. Note
 that [f(x)/x] is continuous for x > 0, so there is k, such that f(k) = k and 0 < k < cx.
 Also, there is k', such that [f(k')/k'] > 1, and 0 < k' < k. Let 0 = (k'/k). Then,
 by (A.3), (A.4), we have f(0k) -f(k) < f '(k) (Ok - k). Hence, f(k) - Ok > f '(k) .
 (k - Ok). This means that (k - Ok) > f'(k) (k - Ok), and f'(k) < 1. It follows from
 this that k is the unique positive number for which f(x) = x. For, suppose there

 were another, call it k. Then f'(k) <1, by the above arguments. Without loss

 of generality, then, we might suppose k> k. Then, (k - k) =f(k) -f(k) < f'(k).
 (k - k) < (k - k), a contradiction. Hence, f(x) = x only for x = k. Thus, for x < k,
 we must have x <f(x) < k, and for x> k, we must have x> f(x)> k. This im-

 plies that if <A, 5V, > is a pure accumulation program from x >0, then 5-t must
 converge to some value k > o as t- >oo. By continuity of f, f(k)=k, so that k = k.

 Since f'(k)<1, so t- Goo, as t-?oo. Hence, <5x, Y, 5> has unbounded input
 value.

 In case (b), we must have f(x) > x for all x >0. This is because by (7), f(x) > x

 for x >0, and if f(k) = k for some k >0, then by the arguments used in case (a),
 f'(k) < 1, which contradicts infx0of'(x)=1. Now, consider the pure accumulation
 program <x, 5, c > from x > 0. Since f(x) > x, for x > 0, so 5t is monotonically
 increasing. If there is K < oo, such that -t:? K for t 20, then 5-t converges to some
 K >0. By continuity of f, f(K) = K, a contradiction. Hence, t-+ co as t-* c,
 and it follows that f'(5xt)-+1, as t-+ co. Now, using the method used in the proof
 of Lemma 2 (in discussing Condition B (ii)), [f(xt+ 1)1/t+ 1f'(t + 1)] 2 [1/f '(t+ 1)]
 -[( -5x1)/f'(O0)vt+ j] for t ?O. Suppose, now, that < x, y, c > has bounded
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 input value, then since Qt is monotonically non-decreasing by (7), so it converges

 to some value V< oo. Using this fact, and (11), and noting that f'(J,)-*l as
 t- cc, we have 1? >1 + [(xl -.0)/f '(.;5O)V], by taking limits in the above inequality.
 Since x1 =f(5o) > .O, we have a contradiction. Hence < x, Y c> has unbounded
 input value.

 In case (c), we must have f(x) <x for all x >0. To see this, note that, by (10),

 supx~o [f(x)lx] =1. Hence, f(x) < x for x >0. Suppose, for some x >0, we
 have f(x)=x, then by (6), f(x)=x for all x satisfying 0<x<.. But this means

 that for x=-x ,f'(x)=1, a contradiction. Consider now the pure accumulation

 program < x, Y, c > from x > 0. Since f(x) < x, for x > 0, so .t is monotonically
 decreasing, and converges to some value k. If k >0, then by continuity of f,
 f(k)=k, a contradiction. Hence k=O, and 5tO-+ as t-+oo, so that f'(51)-t as
 t-o co. Now, note that for t ?0, (tt+ 2-5 i+ 1) =f(5t + 1) -f(t) ? f'(5t) (5 - -t).
 Iterating on this relation, and simplifying, +2? + +1 + [Hlt=of (5 )1 (- -)
 Multiplying through by Pt + 2, At + 2 < [Ut + 1 If '(t + 1)] - [(5 - 1 )/.f '(t + 1)]. Sup-
 pose that <x, 5, c> has bounded input value. Then by (7), since Qt is mono-
 tonically non-decreasing, so 5f converges to some value V < o. Then, taking limits

 in the above inequality, V<V-(5J7-x-1), a contradiction, since -1 =f(5-0)<5O.
 Hence, <x, y, c> must have unbounded input value.

 LEMMA 4. Under (A.1)-(A.4), if the pure accumulation program front every
 x>O, has unbounded input value, then there exists an efficient program with
 unbounded consumption value.

 PROOF. We will construct the required efficient program <x, y, c>. Given

 any x >O, let x0=x, and xt+I=f(xt) for t=0, 1,..., t1, where t1 is the smallest
 integer, for which ptxt ? 1. Since the pure accumulation program from x >0,
 has unbounded input value, t1 < oo. Let Yt+ 1 =f(xt), xt+ 1 = /2Pt+ i), ct+ 1

 yt+ 1-xt+ , for t=t1. Then, it is easy to check that Pt+ Xt+ =I Pt+ ICt+ I >
 for t=t1.

 The rest of the program is defined in the following way. For s ?1, let xt+
 =f(x,), for t = ts + 1,..., ts+ a, where ts+ I is the smallest integer, such that pt+ lXt, +
 ?1. Define yt+1=f(xt), xt+1=[l/(s+2)pt+,] and ct+==yt+i-Xt+l for t=ts+.

 Then, it is easy to check that pt+ jxt+ 1 [1/(s+2)], and pt+ ct+ 1c2 1? for t = tS+1.
 The proof that this sequence is a feasible program is completed by induction.

 Suppose the sequence has been defined up to tsy + 1. Then, xt* +1> 0, and so, since

 the pure accumulation program from xt,*+ 1 has unbounded input value, so we can
 find t<*+1cc0, such that ptxt >, for t=ts*+ . Noting that the sequence was
 well defined for s* =1, we conclude that <x, y, c> is a feasible program.

 Notice that since pt>O, for t20, and ptxt=[l/(s + 1)] for t = ts + 1, so < x, y,

 c> is efficient, by Malinvaud [1953, Lemma 5]. Also, ptct 2 for t=tS+ 1,
 and so <x, y, c>. has unbounded consumption value.
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 EFFICIENCY AND VALUE MAXIMIZATION 641

 We can now combine the results of Lemmas 2, 3, 4, to obtain the following

 complete characterization of technologies for which every efficient program

 generated by it has bounded consumption value.

 THEOREM 1. Under (A.1)-(A.4), every efficient program from x>O, has
 bounded consumption value if and only if Condition B is satisfied.

 5. CONSUMPTION VALUE MAXIMIZATION

 Theorem 1 tells us that if Condition B is not satisfied, then there will be some

 efficient program for which consumption value maximization, at its competitive

 prices, in the class of all feasible programs, will not hold (since such maximization
 will not make sense when consumption value is unbounded). On the other hand,

 if Condition B is satisfied, then since the consumption value of every efficient

 program must be bounded, we expect that every efficient program will also maxi-

 mize consumption value, at its competitive prices, among all feasible programs.

 That this is indeed true is demonstrated in this section, in Theorem 2.

 THEOREM 2. Under (A.1)-(A.4), if Condition B is satisfied, then the following

 four statements are equivalent:

 (a) <x, y, c> is efficient from x>O.

 (b) E ptct2 E ptc for every feasible program <x', y', c'> from x.
 t=1 t=1

 (c) lim Ptxt 0.
 00 00

 (d) poxo + E wtI Pct.
 t=o t=l

 PROOF. We will show that (a) implies (b) which implies (c) which implies (a).
 Also, that (c) implies (d), and (d) implies (c).

 If (a) holds, then by Theorem l, <x, y, c> has bounded consumption value.
 Hence, by the corollary to the theorem in Cass and Yaari [1971, p. 338], (b)
 holds.

 If (b) holds, and (c) is violated, then there is a subsequence of periods, and

 n > 0, such that v > m for this subsequence. Choose T such that E =T pc? <-mh
 Choose T> T, such that v > i, and define a sequence <x', y', c'> as follows:
 (xt, y, ct)-=(x , yt, ct) for 1 < t < - - 1, x =x, (x', yt, ct)=(0, yt, yt) for t=-r,
 and (x', y', c')=(0, 0, 0) for t> T. Then, clearly, <x', y', c'> is a feasible

 program from x, and Zt =iptc' > = ptct + in >? Z 1ptct + Im, which con-
 tradicts (b).

 If (c) holds, then either xt >0 for t>0, or there is t1 < oc, such that xt, -0. In
 the former case, pt>O, for t20, so by Malinvaud [1953, Lemma 5], <x, y, c>
 is efficient. In the latter case, by Cass [1972, p. 203-4], <x, y, c> is efficient.

 In either case, (a) holds.
 If (c) holds, then <x, y, ca> is efficient, as noted above, so that by Theorem 1,
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 642 TAPAN MITRA

 it has bounded consumption value. Now, for T> 1,

 T T T-1

 (13) E Ptt = E (PtYt - PtXt) = pox + Wt- PTXT.
 t=_1 t=_1 t=o

 Since vt has a limit, and so has XT 1ptet, so ET-51wt has a limit. Taking limits
 in (13), and using (c) yields (d).

 If (d) holds, we know that all terms in (13) have limits. Taking limits in (13),

 and using (d) yields (c).

 REMARKS. (i) The statement that (a):(b) says that efficiency is equivalent

 to maximization of the value of consumption, at its competitive price sequence,
 in the set of all feasible programs.

 (ii) The statement that (a):(c) says that efficiency is equivalent to no over-

 accumulation of input, where this overaccumulation is signalled by the transver-

 sality condition (c) being violated.

 (iii) The statement that (a):(d) says that efficiency is equivalent to the full

 utilization of "wealth" for consumption.

 State University of New York at Stony Brook, U.S.A.
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